DIFFERENTIATION

1 Find an equation for the tangent to the curve with equation

$$
\begin{equation*}
y=(3-x)^{\frac{3}{2}} \tag{4}
\end{equation*}
$$

at the point on the curve with x-coordinate -1 .
2 a Sketch the curve with equation $y=3-\ln 2 x$.
b Find the exact coordinates of the point where the curve crosses the x-axis.
c Find an equation for the tangent to the curve at the point on the curve where $x=5$.
This tangent cuts the x-axis at A and the y-axis at B.
d Show that the area of triangle $O A B$, where O is the origin, is approximately 7.20
3 Differentiate with respect to x
a $(3 x-1)^{4}$,
b $\frac{x^{2}}{\sin 2 x}$.
4 The area of the surface of a boulder covered by lichen, $A \mathrm{~cm}^{2}$, at time t years after initial observation, is modelled by the formula

$$
A=2 \mathrm{e}^{0.5 t} .
$$

Using this model,
a find the area of lichen on the boulder after three years,
b find the rate at which the area of lichen is increasing per day after three years,
c find, to the nearest year, how long it takes until the area of lichen is $65 \mathrm{~cm}^{2}$.
d Explain why the model cannot be valid for large values of t.

5

The diagram shows the curve with equation $y=a \ln x-4 x$, where a is a positive constant.
Find, in terms of a,
a the coordinates of the stationary point on the curve,
b an equation for the tangent to the curve at the point where $x=1$.
Given that this tangent meets the x-axis at the point $(3,0)$,
c show that $a=6$.
6 Given that $y=\mathrm{e}^{2 x} \sin x$,
a find $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
b show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=0$.

7 A curve has the equation $x=\tan ^{2} y$.
a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}(x+1)}$.
b Find an equation for the normal to the curve at the point where $y=\frac{\pi}{4}$.

8

The diagram shows the curve $y=\frac{x+2}{\sqrt{x-2}}, x>2$, which has a minimum point at P.
a Find and simplify an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
b Find the coordinates of P.
The point Q on the curve has x-coordinate 3 .
c Show that the normal to the curve at Q has equation

$$
\begin{equation*}
2 x-3 y+9=0 \tag{3}
\end{equation*}
$$

$9 \quad$ A curve has the equation $y=\mathrm{e}^{x}(x-1)^{2}$.
a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
b Show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{e}^{x}\left(x^{2}+2 x-1\right)$.
c Find the exact coordinates of the turning points of the curve and determine their nature.
d Show that the tangent to the curve at the point where $x=2$ has the equation

$$
\begin{equation*}
y=\mathrm{e}^{2}(3 x-5) \tag{3}
\end{equation*}
$$

10 The curve with equation $y=\frac{1}{2} x^{2}-3 \ln x, x>0$, has a stationary point at A.
a Find the exact x-coordinate of A.
b Determine the nature of the stationary point.
c Show that the y-coordinate of A is $\frac{3}{2}(1-\ln 3)$.
d Find an equation for the tangent to the curve at the point where $x=1$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

$$
\begin{equation*}
\mathrm{f}(x)=\frac{6 x}{(x-1)(x+2)}-\frac{2}{x-1} \tag{3}
\end{equation*}
$$

a Show that $\mathrm{f}(x)=\frac{4}{x+2}$.
b Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point with x-coordinate 2, giving your answer in the form $a x+b y=c$, where a, b and c are integers.

